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Wilson loops for pure SU(4) gauge theory are calculated by Monte Carlo simulations on an 84 lattice. By comparing 
Wilson loops on different length scales, an ultraviolet stable attractive fixed point is located at vanishing bare coupling at 
which point asymptotic freedom is numerically verified. 

In some recent papers, we studied pure SU(4) gauge 
theory with the Wilson action on a hypercubical  lat- 
tice in four space - t ime  dimensions and found a first- 
order phase transition at/3 = 10.2 [1 ], that this phase 
transition was not deconfining [2] and measured the 
asymptotic  freedom scale parameter A 0 [2]. In the 
present paper, we wish to apply a renormalization- 
group scheme [3] for comparing the bare coupling 
constants at different cutoff  values, to the gauge group 
SU(4). This procedure was previously successfully ap- 
plied to SU(2) [3] and SU(3) [4]. In order to im- 
plement this renormalization-group procedure to 
SU(4), we measure all Wilson loops up to size 4 X 4 
on an 8 4 lattice. 

Although the gauge group of  interest to the strong 
interactions is SU(3), there are interesting reasons to 
extend these renormalization group studies to SU(4). 
First,  considerable work has gone into using the in- 
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verse of the group size as a possible expansion param- 
eter. Going to a larger group should improve the con- 
vergence of  this expansion and permit testing its de- 
tails. Second, the phase transition structure of  the 
pure Wilson theory changes qualitatively at SU(4), 
where a first order transition first appears. This transi- 
t ion is presumably an artifact of  the formulation and 
should not  have any effect on continuum results. It 
is of  interest therefore to see if  the presence of  this 
transition significantly alters conclusions based on 
physical ratios of  loops, as used in the previous studies 
with SU(2) and SU(3). 

Since our calculational procedure is described in 
great detail in refs. [3,4], the description in the pre- 
sent paper is brief. We work on a hypercubical lattice 
in four euclidean space- t ime  dimensions [5,6]. The 
link joining the nearest-neighbor lattice sites i and j 
is denoted by { i, j}  and on this link sits an N × N 
unitary-unimodular matr ix Uij of the gauge group 
SU(N) with 

/.7/. i = (gi/.) -1 " 
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We define our partition function by 

Z(f l )= f (  ~I dUi/) exp(-/~S[U]) 

where/3 is proportional to the inverse coupling con- 
stant squared,/3 = 2Nigh, where go is the bare cou- 
pling constant, and dUij is the normalized invariant 
Haar measure for SU(N). The action S is defined as 
a sum over all unoriented plaquettes [] such that 

S[U] = ~ S~ = ~ (1 - N  1 Re tr U [ ] ) .  
[ ]  [ ]  

Here U[] represents the product of  link variables 
around the given plaquette. Periodic boundary con- 
ditions were used throughout our calculations and the 
lattice was equilibriated by the method of  Metropolis 
et al. [7]. Our calculations were carried out on a vec- 
tor processor, the CDC CYBER 205. Full details of  
the vectorization of  our calculations is given in ref. 
[8]. From now on we specialize to SU(4). 

We define our Wilson loops [9] by the expectation 
value 

W(I, J) ~-~-(Re tr UC ) , 

where the rectangle C has length I and width J and 
U C is the product of  link variables around C. The 
logarithmic ratios X(I, J )  defined by 

(W(I ,J)W(I-1,J-1))  
X(I ,J )  = - l n  W(I,J- 1 ) W ( I -  1 , J )  ' 

are used to extract the string tension. 
Following ref. [3], we introduce ratios of  Wilson 

loops, which have the same perimeter and the same 
number of  corners. This removes the associated ultra- 
violet divergences. These ratios are defined on length 
scales differing by a factor of  two. Thus, we consider 

W(1, I)W(2,  2) 
F(fl)= 1 W(2, 1)W(2, l ) '  (1) 

and 

W(2, 2) W(4, 4) 
G(¢/) = 1 - W(4,2)W(4, 2)" (2) 

The leading-order weak-coupling expansions are 

F([J) = a(fl) + 0(/3 -2 )  + O(a2 /r2[J) 

= 8Pl/13 + O(/3 -2 )  + O(a2/pZfl), (3) 

where p l  = 0.123 899 43. The final term in eq. (3) 
represents finite cutoff  corrections, with r being the 
scale of  the observable under consideration; see ref. 
[3] for more detail. A renormalization-group fixed 
point/3 F would occur when the observables are scale 
invariant, i.e. when 

F(/3F) = G(flF).  (4) 

Eq. (7) of  ref. [4] suggests that at weak coupling, with 
a suitable shift in the inverse coupling constant squared, 
the two functions F(/3) and G03) should be the same 
with 

F(/3) = G(/3 + (44/3n 2) In 2) + O ( ~ - 3 ) .  (5) 

We performed our calculations by first carrying out 
20 iterations through the 84 lattice with 16 Monte 
Carlo updates per link. The Wilson loops were then 
calculated over the next 240 iterations through the 
lattice. In fig. 1 we show some ordered phase starting 
runs for the Wilson loops. Fig. la shows such a run at 
13 = 10.4 which is near the critical inverse coupling con- 
stant squared. From this diagram we can see that 
W(3,3) and W(4,4) need 200 iterations to equilibriate. 
Fig. 1 b shows a run at fl = 14.0 which is well within 
the weak-coupling region. This diagram shows that 
the space-t ime lattice equilibriates for all Wilson loops 
up to size 4 X 4 after about 50 iterations through the 
lattice. Thus, for all our calculations we averaged over 

o.o5~,, f,,, r,, , ~ , , , ,  ~ [-i i I ] 

• o.o2 [- " ~ % " ~ ' ,  . . . . . . .  a. . . . ]  
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(5,  

H ~ 0 I L s u ( 4 )  84 ,8=14.0 

O . O  I J L J I ~ d  I ~ . 1  I I L I I I ~  I J I 
0 5 0  IO0 150 2 0 0  2 5 0  

ITERATIONS 

Fig. 1. The evolution of the Wilson loops W(I, J) for pure 
SU(4) gauge theory of  an 8 4 lattice as a funct ion  of  the num-  
ber of  i terations through the lattice for ordered phase starting 
lattices for fl = 10.4 (a) and 14.0 (b). 
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t h e  last  60  i t e r a t i o n s  t h r o u g h  t h e  l a t t i ce  w h e r e ,  in or- 

d e r  to  r e d u c e  t h e  c o r r e l a t i o n s  b e t w e e n  even t s ,  o n l y  

every  s e c o n d  i t e r a t i o n  was  i n c l u d e d  in t h e  average.  

Thus ,  30  l a t t i ce  c o n f i g u r a t i o n s  w e r e  used  in t h e  aver- 

age.  O r d e r e d  s t a r t i ng  l a t t i ces  w e r e  u sed  t h r o u g h o u t  ou r  

c a l cu l a t i ons .  O n e  u p d a t e  pe r  l ink  t o o k  300  #s  o n  t h e  

CDC C Y B E R  2 0 5 .  

In  fig. 2 we s h o w  t h e  Wi lson  l o o p s  1 × 1 , 2  × I ,  2 

× 2,  4 X 2 a n d  4 X 4 as a f u n c t i o n  of/3.  The  lead ing-  

o r d e r  s t rong-  a n d  w e a k - c o u p l i n g  e x p a n s i o n s  o f  eqs .  

(1)  and  (2)  ( o f  ref .  [41),  r e s p e c t i v e l y  are  also s h o w n .  

In  o r d e r  to  m a k e  t h e  p r e s e n t  p a p e r  m o r e  use fu l  to  

t h e  r e ade r  a n d  to  give t h e  r eade r  s o m e  idea  o f  t h e  

• Fig. 2. The Wilson loops W(1, J) for pure SU(4) gauge theory 
on an 84 lattice as a function of the inverse coupling con- 
stant squared 13. The full upward triangles represent (I, J )  
= (1,1), the open circles represent (2,1), the crosses represent 
(2,2), the full downward triangles represent (4,2) and the full 
squares represent (4,4). The curves represent the leading-or- 
der strong- and weak-coupling expansion of eqs. (1) and (2) 
(of ref. [4 ]), respectively. 

13 

10.4 10.5 10.6 11.0 12.0 14.0 16.0 

(W(1,1)> 0.5255 0.5390 0.5484 0.5783 0.6297 0.6960 
± 0.0076 _+ 0.0053 _+ 0.0049 ± 0.0029 +_ 0.0016 ± 0.0010 

0.7406 
± 0.0009 

<W(2,1)) 0.2985 0.3156 0.3279 0.3662 0.4331 0.5235 0.5875 
+- 0.0106 ± 0.0076 ± 0.0071 ± 0.0042 ± 0.0025 _+ 0.0017 ± 0.0014 

< W(2,2)> 0.1135 0.1288 0.1407 0.1761 0.2439 0.3418 0.4181 
_+ 0.0114 _+ 0.0084 _+ 0.0080 _+ 0.0052 -+ 0.0035 _+ 0.0026 ± 0.0024 

( W(3,1)> 0.1726 0.1884 0.2002 0.2366 0.3040 0.4001 0.4725 
+_ 0.0106 ± 0.0076 ± 0.0073 +_ 0.0045 _+ 0.0029 ± 0.0020 ± 0.0019 

(W(3,2)) 0.0467 0.0570 0.0656 0.0918 0.1475 0.2355 0.3111 
± 0.0090 ± 0.0067 +- 0.0067 -+ 0.0048 _+ 0.0035 ± 0.0029 +- 0.0028 

<W(3,3)> 0.0151 0.0203 0.0259 0.0417 0.0818 0.1530 0.2224 
_+ 0.0060 _+ 0.0049 ± 0.0049 ± 0.0040 +_ 0.0035 ± 0.0030 ± 0.0033 

(W(4,1)> 0.1002 0.1132 0.1228 0.1535 0.2147 0.3071 0.3814 
± 0.0091 +_ 0.0066 ± 0.0063 +- 0.0041 +_ 0.0028 ± 0.0022 ± 0.0023 

< W(4.2)> 0.0195 0.0262 0.0314 0.0490 0.0912 0.1649 0.2347 
+_ 0.0062 ± 0.0049 ± 0.0047 +_ 0.0038 _+ 0.0031 +_ 0.0030 ± 0.0031 

( W(4,3)> 0.0049 0.0077 0.0110 0.0199 0.0474 0.1026 0.1632 
_+ 0.0037 _+ 0.0032 ± 0.0031 +_ 0.0030 ± 0.0028 ± 0.0029 ± 0.0036 

< W(4,4)> 0.0012 0.0026 0.0041 0.0092 0.0264 0.0670 0.1184 
± 0.0023 +- 0.0022 ± 0.0024 ± 0.0022 -+ 0.0024 +_ 0.0028 ± 0.0039 
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statistical errors in our SU(4) Wilson loop data, we 
present this data in tabular form in table 1. The quot- 
ed errors are the standard deviation measurements on 
the data. As we can see the errors are too small, rela- 
tive to the data points, to be plotted in fig. 2. Of 
course, we have no way of  estimating our systematic 
errors. Our results for Wilson loops up to size 2 X 2 
agree with previous measurements [1 ] made on a 4 4 
lattice which suggests that finite-size effects are at a 
minimum. A number of  other statistical tests, e.g., 
changing the sequence of  random numbers used for 
sampling, taking averages over different sequences of  
equilibriated gauge field configurations and using a 
different number of  iterations before deciding to take 
our averages, all led to similar results indicating the 
numerical stability o f  our results. 

1 0  t 
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I0 -I 

10-2: 
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SU(4) 84 m 
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Fig. 3. The string tension X(I, Z) for  pure SU(4) gauge theory 
on an 84 lattice as a function of  the inverse coupling con- 
stant squared j3. The full upward triangles represent (1, J )  = (1, 
1), the full circles represent (2,2), the crosses represent (3,2), 
the open triangles represent (4,2), the open circles represent 
(3,3), the cricles with crosses represent (4,3) and the circles 
with dots represent (4,4). The leading-order strong-coupling 
expansion of  eq. (3) of ref. [4 ] is also shown. 

Fig. 3 shows the logarithmic rations X(1, J) for (I, 
J )  = (1,1), (2,2), (3,2), (4,2), (3,3), (4,3) and (4,4) 
as a function of/3. The band in fig. 3 corresponds to 
the functional form of  eq. (6) of  ref. [4] with the 
asymptotic freedom scale parameter taken from ref. 

[21 

A 0 = (4 .5  + 0 . 5 )  X 1 0 - 3 N / ' g  , ( 6 )  

where K is the string tension. Note that the Monte 
Carlo data appear somewhat steeper than the scaling 
prediction. This suggests that the nearby transition 
is delaying the onset of  scaling and that A / v ~ m a y  
be somewhat larger than the earlier statement in eq. 
(6). The errors in fig. 3 are the maximum standard 
deviation errors measured in the averaging procedure. 
We feel that as a result of  these errors, the results de- 
rived from the measurements of  the larger Wilson loops 
have statistical significance. 

In fig. 4 the quantities F and G are shown as func- 
tions of  the inverse coupling constant squared/3. Also 
plotted are the leading-order strong-coupling expan- 
sions of  eqs. (10) and (11) of  ref. [4] and the weak- 
coupling expansion of  eq. (3). From fig. 4 we see that 
G(/3) > F(/3) for all/3 with the only fixed point, follow- 
ing eq. (4), evident at/3 = oo. 

F(/3) and G(/3 + (44/3rr2) In 2), are shown in fig. 
5 as a function of  the inverse coupling constant squar- 
ed/3. Agreement with the asymptotic freedom predic- 
tion of  eq. (5) is achieved. In figs. 4 and 5 the errors 
shown are the maximum standard deviation measure- 
ments made during the averaging process. 

As in ref. [3], we can define an effective renormal- 
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/3 

Fig. 4. The quantities F(/3) and GO) for pure SU(4) gauge 
theory on an 84 lattice as a function of the inverse coupling 
constant squared ~. The curves represent the leading-order 
strong- and weak-coupling expansions of  eqs. (10) and (11) 
of  ref. [4] and eq. (3). 
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Fig. 5. The quantities F(/3) and G(I3 + 1.03) for pure SU(4) 
gauge theory on an 84 lattice as a function of the inverse 
coupling constant squared/3. 

ized coupling at twice the lattice spacing 

g2  (2a) = F ( 3 ) / p l  • 

In fig. 6 we plot the inverse of  this coupling versus 13. 
Also shown in the leading-order strong-coupling expan- 
sion. The curve in the weak-coupling region has a 
slope of 1/8. The good agreement of  this slope with 
the Monte Carlo data indicates that (a/r) 2 corrections 
in eq. (5) are small. The intercept in fig. 6 gives 

270 l n ( 2 A R / A 0 )  "~ 0 . 9 ,  

or 

A R = 63.5 A 0 . 

A closely related number, using the interquark poten- 
tial to define a renormalized coupling, has been cal- 
culated perturbatively by Billoire [10] to be 52.2. 
From eq. (6) we obtain 

AR = 0.29v . 
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Fig. 6. The quantity Pl/F(/3) for pure SU(4) gauge theory 
on an 84 lattice as a function of the inverse coupling constant 
squared/3. The curves represent the leading-order strong-cou- 
pling expansion of eq. (3) and the straight-line of eq. (7) of 
ref. [4 ]. 
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